Multi-Particle Measurement in Polarized Proton-Proton Collisions at PHENIX

JPS Spring Meeting Mar. 28, 2006 28pWD-3

Kenichi Nakano (Tokyo Tech, RIKEN) for the PHENIX Collaboration

Contents

- Introduction
- Experimental setup
- Analysis method and status
- Conclusion

Introduction

Nucleon spin problem (EMC 1988), gluon polarization in the proton Δg

$$\frac{1}{2}_{\text{proton}} = \frac{1}{2} \sum_{q} \Delta q + \Delta g + L_{q,g}$$

- \blacksquare reactions accessible to Δg ... jet, inclusive π^0 , direct photon, etc.
- Measurement of multi-particle as a part of jet with PHENIX Central Arm (Δφ = 90° x 2, $|\eta|$ < 0.35) is sensitive to Δg as shown in next page
- **D**ouble helicity asymmetry (A_{II}) in jet production

$$A_{LL} \equiv \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_B P_Y} \frac{N_{++} - R N_{+-}}{N_{++} + R N_{+-}} \quad , \quad R \equiv \frac{L_{++}}{L_{+-}}$$

- lacksquare A_{LL} has information on Δg
 - $\blacksquare g+g$ and q+g reactions are dominant in mid- p_T jet production
 - for $gg \rightarrow gg$ reaction, $A_{LL}^{gg \rightarrow gg} = \int dx_1 dx_2 \frac{\Delta g(x_1)}{g(x_1)} \cdot \frac{\Delta g(x_2)}{g(x_2)} \cdot \hat{a}_{LL}^{gg \rightarrow gg}$
- ullet A_{LL} in multi-particle measurement is a modified A_{LL} of jet production

Introduction

ullet Double helicity asymmetry A_{LL} in multi-particle measurement

- PYTHIA ver. 6.220 default setting and MPI setting were used
 - MPI (Multi-Parton Interaction) ... tuned with CDF Run2 data by Rick Field (R. Field Tune A setting)
 - PYTHIA MPI generates event structure (multiplicity, thrust in acceptance, and pT density in $\delta \phi$) better than default

Introduction

Double helicity asymmetry A_{LL} in multi-particle measurement

- Run2005 stat. and further study on sys. errors will bring conclusive result
- Inclusive jet production cross section by multi-particle measurement
 - \blacksquare it will show how well we are measuring jet and its p_{τ}
- Analysis method and current status on jet cross section measurement is presented in this talk

Experimental Setup - PHENIX@RHIC

- Longitudinally polarized proton-proton collision at $\sqrt{s} = 200$ GeV at RHIC
- PHENIX Central Arms: $\Delta \phi = 90^{\circ} \text{ x } 2$, $|\eta| < 0.35$
- Event selection
 - $p_T(\text{photon}) > 2 \text{ GeV/}c \text{ (offline trigger)}$
- Particle selection
 - photon: detected with EMCal
 - $p_T > 0.4 \text{ GeV/}c$
 - veto of charged particle
 - shower shape cut
 - charged particle: detected with Drift Chamber & Pad Chamber 1
 - $ightharpoonup 0.4 < p_{_T} < 4.0 \; {
 m GeV}/c$
 - track quality cut

Outline (Analysis Method)

- Analysis outline
 - $lacksquare N^{
 m cone}$ as a func. of $p_T^{
 m cone}$ (high- p_T photon trigger, cone method for particle clustering)

 $p_{\scriptscriptstyle T}^{\scriptscriptstyle \, ext{cone}}$ - $p_{\scriptscriptstyle T}^{\scriptscriptstyle \, ext{jet}}$ relation with PYTHIA+GEANT

 $lacksquare N^{
m jet}$ as a func. of $p_{\scriptscriptstyle T}^{
m jet}$

 $\operatorname{high-}\!p_{\scriptscriptstyle T}$ photon efficiency and acceptance corrections with PYTHIA

 $m{ar{N}}^{
m jet}_{
m corr}$ as a func. of $p_{\scriptscriptstyle T}^{
m \; jet}$

global factors (luminosity, BBC high- $p_{\scriptscriptstyle T}$ event eff., etc.)

lacksquare $\sigma^{
m jet}$ as a func. of $p_{\scriptscriptstyle T}^{
m jet}$

Relation btw. p_T^{cone} and p_T^{jet} (Analysis Method)

Comparison in each p_T^{cone} bin (evaluated with PYTHIA+GEANT)

- most events in each p_T^{cone} bin have $p_T^{\text{jet}} \sim p_T^{\text{cone}} / 0.7$
 - lacksquare good for A_{LL} measurement

Relation btw. p_T^{cone} and p_T^{jet} (Analysis Method)

Absolute comparison in p_T^{cone} - p_T^{jet} space (evaluated with PYTHIA+GEANT)

- events in many p_T^{cone} bins contribute to one p_T^{jet} bin
 - lacksquare a jet slightly out of acceptance can make smaller $p_{\scriptscriptstyle T}^{\rm \; cone}$
 - difficulty in cross section meas. (unfolding method is under study)

Corrections to N^{jet} (Analysis Method)

- Corrections for high-pT photon efficiency and acceptance
 - **c** correction factor was evaluated with PYTHIA (without PISA, numerical cut for p_T , η and φ)
 - \blacksquare high- p_T photon efficiency
 - ullet only jets including high- $p_{\scriptscriptstyle T}$ (>2.0 GeV/c) photon were measured
 - the probability that jets includes high- p_T photon were evaluated
 - acceptance
 - the acceptance in the experiment is for trigger photons, not for jets
 - the correction factor from trigger ph. acceptance to jet acceptance were evaluated

$$\epsilon \equiv \frac{p_T^{\text{ph}} > 2.0 \text{ GeV/} c \&\& |\eta^{\text{ph}}| < 0.35 \&\& \Delta \phi = 90^o \times 2}{|\eta^{\text{jet}}| < 0.35}$$

Corrections to N^{jet} (Analysis Method)

Corrections for high-pT photon efficiency and acceptance

$$\epsilon \equiv \frac{p_T^{\text{ph}} > 2.0 \text{ GeV/} c \&\& |\eta^{\text{ph}}| < 0.35 \&\& \Delta \phi = 90^o \times 2}{|\eta^{\text{jet}}| < 0.35}$$

- 2 GeV/ $c \pm 1.5\%$ were used as threshold values to check the effect of the EMCal energy scale uncertainty ... 6~1% on cross section
- with PYTHIA MPI outputs, comparison of cross section with MinBias setting shows ~15% difference (under study)

Jet Cross Section (Analysis Method)

Jet production cross section

$$E\frac{d^3\sigma}{dp^3} = \frac{1}{L} \cdot \frac{1}{p_T^*} \cdot \frac{C_{\text{trig}}}{f^{\text{BBC}}} \cdot \frac{N_{\text{corr}}^{\text{jet}}}{\Delta p_T \Delta \eta \Delta \phi}$$

- systematic errors
 - assigned above; luminosity (BBC cross section) ... 10%, mom. scale of photon & charged particle ... 9% & 4%, etc.
 - under study; p_T scale in $p_T^{\text{cone}} \rightarrow p_T^{\text{jet}}$ conversion, trigger efficiency

Conclusion

- The physics goal is to obtain the gluon polarization Δg in the proton. Measurement of multi-particle as a part of jet with PHENIX Central Arm ($\Delta \phi$ = 90° x 2, $|\eta|$ < 0.35) is sensitive to Δg .
- Inclusive jet production cross section by multi-particle measurement is being analyzed. It will show how well we are measuring jet and its $p_{\scriptscriptstyle T}$
- The relationship between p_T^{cone} and p_T^{jet} has been evaluated with PYTHIA+GEANT simulation. The fact that events in one p_T^{parton} bin contributes to many p_T^{cone} bins can cause large model dependence. Better unfolding method is under study.
- The major souces of systematic error in cross section measurement are luminosity (BBC cross section. 10%), mom. scale of photon & charged particle (9% & 4%), p_T scale in $p_T^{\text{cone}} \rightarrow p_T^{\text{jet}}$ conversion (under study), and trigger efficiency (~15%, under study).
- Based on this achievement, A_{LL} in multi-particle measurement will be analyzed

Particle Clustering

- Particle clustering with cone
 - photons ($p_T > 0.4~{\rm GeV/}c$) and charged particles ($0.4 < p_T < 4.0~{\rm GeV/}c$) with offline high- p_T (> $2.0~{\rm GeV/}c$) photon trigger
 - make cones by using all particles as seed
 - cone radius $R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.3$
 - cone momentum = vector sum of mementa of particles in the cone
 - cone axis = direction of cone momentum (dir. of seed particle at first)
 - \blacksquare use cone with highest $p_{_T}^{_{\text{cone}}}$ in events

$$m{p}_T^{
m cone} \equiv \sum_{i ext{ in cone}} m{p}_{Ti}$$

Unfolding Method

 p_T^{cone} - p_T^{jet} relation

 $lacksquare S_{ii}$... conversion matrix from $p_{\scriptscriptstyle T}^{\rm \ jet}$ to $p_{\scriptscriptstyle T}^{\rm \ cone}$ (by acceptance effect etc.)

$$S_{ij} \equiv \frac{\partial \sigma_i^C}{\partial \sigma_j^J} = \frac{n_{ij}}{n_j^J} , \quad n_i^C = \sum_i n_{ij}$$

- lacksquare S_{ij} must be evaluated with simulation
- n_{ij} ... event rate in (i, j) bin

- $lacksquare N^{C}_{i}$... cone yield in i-th p_{T}^{cone} bin (measured)
- $lacksquare N^{J}_{i}$... jet yield in j-th p_{T}^{jet} bin (true)

statistical covariance matrix

$$\nu(N_{j}^{J}, N_{k}^{J}) = \sum_{i_{1}=1}^{n_{cone}} \sum_{i_{2}=1}^{n_{cone}} \mathcal{D}(j, i_{1}) \mathcal{D}(k, i_{2}) \sigma_{N_{i_{1}}^{C}} \sigma_{N_{i_{2}}^{C}} \quad , \quad \mathcal{D}(j, i) \equiv \frac{\partial N_{j}^{J}}{\partial N_{i}^{C}} = S_{ji}^{\prime - 1}$$

